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BLOOD PRESSURE ESTIMATION BY
WEARABLE COMPUTING DEVICE

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Patent Application No. 62/416,054, filed Nov. 1, 2016, the
entirety of which is hereby incorporated herein by reference.

BACKGROUND

[0002] Hypertension, or high blood pressure, is a chronic
condition which is generally asymptomatic but is a risk
factor for a variety of medically significant outcomes,
including stroke, heart failure, and coronary artery disease.
It has a large impact on public health and healthcare spend-
ing, affecting between 16 and 37% of the world population.
Treatment of high blood pressure is readily available via
lifestyle changes and medication, but in order to determine
who needs such treatment, accurate measurement of blood
pressure is a necessity. Even after the initial diagnosis,
monitoring blood pressure is helpful for managing hyper-
tension, as doctors can monitor whether patients are keeping
their pressure within recommended limits.

[0003] Measuring blood pressure (BP) involves determin-
ing a systolic (SBP) and diastolic (DBP) value; representing
the peak and minimum values of blood pressure in the artery,
respectively. The clinical standard of attaining these mea-
surements involves a stethoscope and a sphygmomanometer
(inflatable cuff with pressure gauge) and listening for the
changes in blood flow as the artery is completely occluded,
partially occluded, and unoccluded; this is known as the
auscultatory method. Patients will often monitor blood pres-
sure at home with an automated device, also with an
inflatable cuff, which uses the oscillometric method of
measurement, an approach with a similar principle that
attempts to determine the changes in the pressure wave
electronically (with some loss in accuracy). These single-
point measurements, however, do not necessarily predict
whether a patient is truly hypertensive. Blood pressure
varies throughout the day, and a patient’s blood pressure is
often higher at the doctor’s office at midday versus when
relaxing at home, due both to the physical activity associated
with travel to the clinic and the patient’s anxiety from
meeting with the doctor (known as the “white coat effect”).
[0004] An increasing body of evidence suggests that
ambulatory BP monitoring (ABPM) provides a much more
complete measure of blood pressure than either a single
measurement at the clinician’s office or a single measure-
ment with a home blood pressure device, and as such
provides significant value in the diagnosis and treatment of
hypertension. The current standard in ABPM is an inflatable
oscillometric cuff (typically with a tube going to a base
module) that must be worn at all times; the cuff will inflate
periodically and at least partially immobilize the wearer’s
arm. As a result, ABPM studies are logistically difficult;
periodic inflation is at best uncomfortable, at worst painful,
and often disrupts sleep during overnight studies. This has
hindered the adoption of ABPM in practice.

SUMMARY

[0005] According to one aspect of the present disclosure,
a method for estimating blood pressure is provided, com-
prising training a machine learning model on a cohort data
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set. The cohort data set may include subject-specific con-
textual data, time-varying features, and blood pressure mea-
surements for a plurality of subjects. The method may
include receiving contextual data for a specific subject,
wherein the contextual data includes medical history data of
the subject. The method may further include personalizing
the machine learning model to the subject based on the
contextual data. The method may include calibrating the
machine learning model to the subject based on a set of
time-varying features and blood pressure measurements of
the subject. In addition, the method may include using the
machine learning model and the time-varying features for
the subject to generate a blood pressure estimate.

[0006] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter. Furthermore, the
claimed subject matter is not limited to implementations that
solve any or all disadvantages noted in any part of this
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIGS. 1A and 1B show a wearable sensing device
according to examples of the present disclosure.

[0008] FIG. 2 shows a flow chart illustrating the wearable
sensing device producing a blood pressure estimate using a
machine learning model, according to examples of the
present disclosure.

[0009] FIG. 3 shows a flow chart illustrating a machine
learning algorithm according to examples of the present
disclosure.

[0010] FIG. 4 shows a flow chart illustrating a method for
producing a blood pressure estimate.

[0011] FIG. 5 schematically shows a computing system
according to examples of the present disclosure.

DETAILED DESCRIPTION

[0012] The inventors of the subject application have con-
sidered two non-obtrusive surrogates for oscillometrically-
measured brachial pressure in 24-hour BP studies: radial
pulse pressure (rPP) and aortic pulse wave velocity
(aoPWV). Under certain circumstances, trends in these
metrics parallel trends in brachial blood pressure, though an
initial calibration measurement is always required. The
former (rPP) has been embodied in at least one commer-
cially available device (the HealthSTATS BPro, which is
FDA-cleared as an ambulatory blood pressure monitor). The
latter (a0PWV) remains a research approach. The inventors
have discovered that both approaches suffer from accuracy
issues, and that the latter (aoPWV) is not readily observable
from a wearable device, which has prevented adoption of
either approach as an ABPM replacement.

[0013] To address these issues, the inventors conceive that
instead of such approaches, potential benefits in accuracy
may be realized by incorporating a wide variety of other
physiological and contextual factors. For instance, knowing
a patient’s heart rate, activity state (including recent activity
levels), physical pose, time and type of last medication dose,
or even static information from their health records (previ-
ous smoking history, recent significant weight loss or gain,
pregnancy, etc.) can greatly augment the predictive power of
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a BP model. In this disclosure, a solution that uses machine
learning to predict BP values from a broad set of features
that can be obtained non-invasively from unobtrusive wear-
able sensors and other obtainable information is described.
This approach not only provides a more practical solution to
ambulatory BP monitoring, but also, given the unobtrusive-
ness of the required sensing, it opens the door to new types
of treatment that involve continuous monitoring over the
course of months or years. Some of these possibilities are
discussed in the description below.

[0014] With reference now to FIGS. 1A and 1B, aspects of
an example computing device 10 in the form of a wearable
sensing device 200 will now be described. In this example
wearable sensing device 200 is band-shaped with fastening
componentry 212A and 212B arranged at both ends of the
device. The fastening componentry enables the device to be
closed into a loop and to be worn on a patient’s wrist.
[0015] Wearable sensing device 200 may include various
functional components integrated into the device. For
example, the wearable sensing device 200 may include
computing device 10, display device 18, a loudspeaker 216,
and a communication suite 220. The wearable sensing
device 200 may also include various sensors, such as an
optical heart rate sensor 224 and motion sensing componen-
try. The optical heart rate sensor 224 may comprise an
optical source configured to illuminate one or more blood
vessels through a patient’s skin, and an optical sensor
configured to measure reflected illumination from the blood
vessels. In this manner, measurements of the wearer’s heart
rate, blood oxygen level, blood glucose level, or other
biomarkers with optical properties may be generated.
[0016] Insome examples the motion sensing componentry
may comprise an accelerometer 232 and a gyroscope 236
inside the device 200. In other examples, the motion sensing
componentry may comprise any combination of accelerom-
eters 232, gyroscopes 236, and magnetometers.

[0017] Insome examples the accelerometer 232 and gyro-
scope 236 may furnish inertial and/or rotation rate data
along three orthogonal axes, as well as rotational data about
the three axes, for a combined six degrees of freedom
(6DOF). This 6DOF sensor data may be used to provide
pedometer and calorie-counting functions, for example.
[0018] The wearable sensing device also may include a
GPS receiver 240 for determining the wearer’s geographic
location and velocity. In some configurations, the antenna of
the GPS receiver may be relatively flexible and extend into
side regions 208. The wearable sensing device 200 also may
include a barometer 252 for measuring a barometric pressure
to which the device is subject.

[0019] The above-described components may draw power
from one or more energy-storage cells 242. Energy-storage
cell(s) 242 may comprise one or more batteries, such as a
lithium ion battery.

[0020] In wearable sensing device 200, computing device
10 is situated below display device 18 and operatively
coupled to the display device 18, along with loudspeaker
216, communication suite 220, and the various sensors. The
computing device 10 includes a data-storage machine 244 to
hold data and instructions, and a logic machine 248 to
execute the instructions.

[0021] Display device 18 may be any suitable type of
display device. In some configurations, a thin, low-power
light emitting diode (LED) array or a liquid-crystal display
(LCD) array may be used. An LCD array may be backlit in
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some implementations. In other implementations, a reflec-
tive LCD array (e.g., a liquid crystal on silicon, LCOS array)
may be front lit via ambient light. A curved or a flat display
may be used. In some examples AMOLED displays or
quantum dot displays may be used.

[0022] Communication suite 220 may include any appro-
priate wired or wireless communications componentry. The
communication suite 220 may include two-way Bluetooth,
Wi-Fi, cellular, near-field communication, and/or other
radios. In some implementations, the communication suite
220 may include an additional transceiver for optical (e.g.,
infrared) communication.

[0023] In wearable sensing device 200, a touch-screen
sensor 254 is coupled to display device 18 and configured to
receive touch input from the user. Pushbutton sensors may
be used to detect the state of push buttons 258 A, 258B which
may include rockers. Input from the pushbutton sensors may
be used to enact a home-key or on-off feature, control audio
volume, turn the microphone on or off, or other function.
[0024] FIGS. 1A and 1B show various other sensors of
wearable sensing device 200. Such sensors include micro-
phone 260, ambient light sensor (ALS) 264, UV sensor 268,
and ambient temperature sensor 272. The microphone 260
provides input to computing device 10 that may be used to
measure the ambient sound level and/or sound pressure
profiles, and may receive voice commands from the wearer.
Input from one or more of the above-described sensors may
be used to assess aspects of the wearer’s environment, such
as the whether the wearer is indoors or outdoors, tempera-
ture, overall lighting level, etc.

[0025] FIG. 1A shows a pair of contact sensor modules
276A and 276B that contact the wearer’s skin when wear-
able sensing device 200 is worn. The contact sensor modules
may include independent or cooperating sensor elements to
provide a plurality of sensory functions. For example, the
contact sensor modules may provide an electrical resistance
and/or capacitance sensory function, which measures the
electrical resistance and/or capacitance of the wearer’s skin.
At least one contact sensor module is an electrocardiograph
54 configured to detect a pulse electrical signal 56 when the
user touches the wearable sensing device 200 with the hand
not wearing the device 200 to form a complete circuit that
includes the wearable sensing device 200 and the user’s
heart. In some examples, a contact sensor module may also
provide measurement of the wearer’s skin temperature. At
least one contact sensor module is a pulse pressure sensor 50
configured to detect a pulse pressure wave signal 52.
[0026] FIG. 2 shows a wearable sensing device 200,
including a processor 12, non-volatile memory 14, random
access memory 16, and a display device 18. The processor
12 is configured to use a machine learning model 40 to
produce a blood pressure estimate 60 on the random access
memory 16. The machine learning model 40 produces the
blood pressure estimate 60 using data stored in the non-
volatile memory 14. The machine learning model 40 may
convey the blood pressure estimate 60 for display on a
display device 18.

[0027] The data with which the machine learning model
40 makes the blood pressure estimate 60 includes a subject
data set 42. The subject data set 42 may include contextual
data 44, time-varying features 46, and blood pressure mea-
surements 48. The contextual data 44 includes medical
history data of the subject. The subject contextual data 44 of
the subject may include information from the subject’s
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medical history data selected from the group consisting of
demographic information, comorbidities, past and present
medications, vital signs, laboratory test results, recent
weight change, echocardiogram results, cardiovascular dis-
ease history, smoking history, and past and present preg-
nancy.

[0028] The machine learning model 40 also makes the
blood pressure estimate 60 based on a cohort data set 62. The
cohort data set 62 includes subject-specific contextual data
64, time-varying features 66, and blood pressure measure-
ments 68 for a plurality of subjects. The cohort contextual
data 64 may include medical history data of the subjects in
the cohort. The medical history data included in the cohort
contextual data 64 may include information from the sub-
jects’ medical history data selected from the group of
features listed above.

[0029] The wearable sensing device 200 of the present
disclosure may combine static data (measured in the clini-
cian’s office, obtained from medical records, or entered by
the patient) and dynamic data (measured by the wearable
sensing device 200) into a blood pressure estimate 60 using
the machine learning model 40.

[0030] The static data may include calibration data, which
may contain measurements both from the device 200 and a
conventional blood pressure measurement (via auscultatory
method, oscillometric cuff, etc.). The calibration data can be
used to modify the blood pressure estimate 60 using the
machine learning model 40.

[0031] The calibration data may be more effective if it
contains a range of blood pressure values. In order to
achieve this, the subject can be led through a number of
postural variations (standing, sitting, lying down) in order to
capture this variation.

[0032] Variation in the blood pressure values for the
calibration data can also be achieved via exercise, such as
walking on a treadmill or riding a stationary bicycle.
[0033] Variation in the blood pressure values for the
calibration data can also be achieved via pharmacological
intervention, i.e., measurements can be taken before and
after (e.g., at 10 minute intervals) taking a dose of blood
pressure-lowering medication.

[0034] The processor 12 is configured to receive input
from a pulse pressure sensor 50. The pulse pressure sensor
50 is configured to detect a pulse pressure wave. Upon
detecting a pulse pressure wave, the pulse pressure sensor 50
inputs a pulse pressure wave signal 52 into the processor 12.
[0035] The processor 12 may also be configured to receive
input from an electrocardiograph (EKG) 54. The EKG 54
may be configured to detect a pulse electrical signal 56.
Upon detecting a pulse electrical signal 56, the EKG 54 may
input the pulse electrical signal into the processor 12.
[0036] Based on at least the pulse pressure wave signal 52
and the pulse electrical signal 56, the machine learning
model 40 may determine a pulse arrival time 58. The pulse
arrival time 58 is the time difference between the time at
which a heartbeat is detected in the pulse electrical signal 56
and the time at which the same heartbeat is detected in the
pulse pressure wave signal 52.

[0037] The machine learning model 40 may also deter-
mine a variety of pressure wave morphology metrics based
on the pulse pressure wave signal 52. The pulse pressure
sensor 50 may be configured to detect the pressure wave
morphology of the pulse pressure wave signal 52, including
pressure wave morphology metrics selected from a group
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consisting of augmentation index, maximum systolic slope,
systolic rise time, ejection time, dicrotic notch height,
dicrotic notch time, pulse pressure, reflected wave arrival
time, and heart rate.

[0038] The wearable sensing device 200 may detect a
variety of conditions under which the patient’s blood pres-
sure is likely to change. Based on detecting such conditions,
the machine learning model 40 may compare the blood
pressure of the patient to the blood pressure that the patient
had previously under similar conditions.

[0039] For example, a large fraction of people exhibit a
phenomena known as “nighttime dipping,” in which the
blood pressure drops significantly during the night. The
wearable sensing device 200 may detect a time of day and
input the time of day into the machine learning model 40.
Based on the inputs of the sensors of the wearable sensing
device 200, the wearable sensing device 200 may also be
configured to detect when the patient is asleep, and when the
patient is asleep detect a sleep stage. These detections of
sleep and sleep stage may be used as inputs by the machine
learning model 40.

[0040] The wearable sensing device 200 may also detect
physical activity of the patient. Physical activity that
changes heart rate affects blood pressure differently than
other factors; thus it is important both to estimate the level
of physical activity over time and to model the ways in
which it can affect blood pressure. The wearable sensing
device 200 may detect that the patient is engaging in
physical activity by, for example, detecting a signature
reading from an accelerometer 232 in conjunction with an
increase in heart rate. The machine learning model 40 may
use the detection of physical activity as an input. Medium-
to long-term use of the wearable sensing device 200 can
show a patient’s overall level of physical activity and
physical activity patterns, which can provide another set of
contextual factors for blood pressure.

[0041] Blood pressure can vary significantly based on
location, due both to the physical activity required to travel
between locations and changes in stress or alertness asso-
ciated with changes in location. The wearable sensing device
200 may be configured to detect the location of the patient,
for example using a GPS receiver 240. The machine learning
model 40 may use the location of the patient as an input.
[0042] The pose of the patient’s body can also affect the
patient’s blood pressure. The wearable sensing device 200
may be configured to detect the body pose of the patient. For
example, the wearable sensing device 200 may determine
the patient’s body pose by using the accelerometer 232 and
the gyroscope 236 to detect the acceleration and spatial
orientation of the wearable sensing device 200. For example,
the wearable sensing device 200 may use recent data from
the accelerometer 232 and gyroscope 236 to determine
whether the patient is sitting, lying, standing, or walking. A
body pose detected using these or other inputs may be used
as an input by the machine learning model 40.

[0043] The machine learning model 40 may use a variety
of machine learning techniques. Machine learning tech-
niques used by the machine learning model 40 to generate
the blood pressure estimate 60 may include regression
models, hidden Markov models, conditional random field
models, and other models.

[0044] In one instantiation, the machine learning model 40
may be a regression model that uses as input static features
and dynamic features to estimate BP values at a given time,
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but does not make use of dynamic feature history prior to
that window. This approach may be useful when typical
models of time variation learned from a larger cohort could
prove deleterious to predictive power, especially for patients
who have minimal contextual data or are being monitored
for a short time.

[0045] In another instantiation, the machine learning
model 40 may be a time-series model using features from
both the current timestep and history, with a Markov
assumption. A Markov assumption is an assumption that all
the dependence in previous timesteps is captured in the
previous model output (e.g., in a Hidden Markov Model).
With this assumption, to predict blood pressure at time t, the
machine learning model 40 only needs to use dynamic
features associated with time t, along with the probabilities
of various blood pressures from time t-1. Static features
may be re-incorporated at each time step, or static features
may factor explicitly only into the initial output t0 (they
would then be implicitly carried forward in model output).
This restriction can be relaxed to include other information
from recent timesteps (e.g., in conditional random field
models).

[0046] For either regression or time series models, the
machine learning model 40 need not be restricted to a
generic combination of features. There is great modeling
power in introducing a small number of person-specific
parameters into the model, which can be fit based on static
(EMR, etc.) data and/or a small number of cuff-based
calibration measurements.

[0047] It is possible to go beyond generic/agnostic
machine learning models to incorporate specific elements of
physiological models into the machine learning model 40.
For instance, one well-known model of blood pressure is as
follows:

BP=CO*SVR=(HR*SV)*SVR

where CO is cardiac output, SVR is systemic vascular
resistance, HR is heart rate, and SV is stroke volume. This
particular model can help distinguish the effect of exercise
versus other endogenous factors on blood pressure. Since
particular features may be more relevant to some of these
entities than others, these relationships can be expressed
directly in a model, e.g.:

SVR=Sw,f,,
SV-Sw,f,;

BP=HR*SV*SVR

where f; and f,, are features expected to be of value in
predicting SVR and SV, respectively. While knowing the
nature of the interaction between these intermediate vari-
ables will be valuable, it is not necessary to know the
specific contributions of the feature variables (i.e., the
weights). Note that the linear model for each subcomponent
is only meant as an illustration; nonlinear instantiations are
also possible.

[0048] An example embodiment of a machine learning
model 40 is provided below. At a high level, the model of
interest uses a mapping that can be described as:

Vi F(%36%:6,9,,0)

[0049] Above, x,, represents time-dependent features
available to the model for a subject i at a time t (possibly
including information from previous timesteps), X,, repre-
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sents static features for the subject, and y,, represents a target
variable (e.g., systolic blood pressure) at a given timestep.
Parameters 6, refer to global parameters pertaining to all
subjects, and 0, refer to parameters specific to a particular
subject.

[0050] To train such a model, the model optimizes the
mapping over all parameters with all training data (i.e., all
subjects in a training set):

Oupe = argmin ) L(F(xi 6, 8). yi)

train

where L(+,) is a loss function, for instance squared loss:
L(a,b)=(a-b)?

[0051] When a new subject (unseen to the model) is
introduced, the model is modified in two ways. First, the
static features for the subject are used to determine the 6,
parameters:

0,=G(x)

[0052] Second, some or all of the 6, parameters can be
optimized for the subject using calibration data, with 6, held
fixed (this is the more conventional form of model person-
alization):

Oy =argmin " LIF(ir, 0;s 0p), Yie) + Z6;, 0;p)

calibration

In the above Z represents an optional penalty term for
straying too far from learned 0, values in the in the training
data. The examples below illustrate how this can be done in
practice, though the particular mechanisms should not be
considered exclusive, i.e., many other modeling choices are
available within this same framework.

[0053] One example of the model described above makes
use of linear regression, a very simple “inner model,” as the
core of the approach.

— 7
Yiem W xit+b

Where w is of length Q, i.e., there are Q time-dependent
features available at every timestep, which may include
information from previous timesteps. Note that w and b are
global to all subjects.

[0054] In this simple form, it will be very difficult for this
model to perform well, especially for a signal such as blood
pressure. Since the baseline values and dynamic range of
blood pressure for different subjects vary greatly, the model
will have to try to make the best average fit over all of these
variations, and in the end will learn a set of parameters that
is not particularly effective for any subject.

[0055] To counter this issue, the inner model may now be
augmented with additional subject-specific parameters. The
simplest version of this would be the addition of a subject-
specific bias term; a further step would be to add a subject-
specific scaling term. Both are incorporated in the model
below:

Vi wx)+B;

These additional parameters can be fit using a small number
of calibration measurements X,, ., y,,. given the calibration
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equation for 6, ,,, above. In addition, w may be adjusted
based on these calibration measurements, though it is critical
to use the penalty term Z in that case to prevent overfitting.
[0056] The scale and bias parameters above greatly
improve the ability of the model to fit the range of a new
subject’s data, and while the regression parameters w may
be tuned with calibration data and the penalty term, the true
model could go beyond this to use a variety of modes of
parameters. For instance, subjects of a particular gender,
weight, or medical history may have a different character-
istic set of parameters. Furthermore, mixtures of such modes
could provide even greater coverage. Given such a set of
modes, the static measurements x;, could be mapped to an
appropriate mode or mixture of modes.

[0057] One approach to mapping the static measurements
X,, to an appropriate mode or mixture of modes would be to
fit subject-specific regression models for a large number of
subjects and then cluster the resulting set of regression
parameter sets W, . . . W,. A separate set of classifiers may
then be used to identify cluster membership for new indi-
viduals based on their static measurements x,,. The param-
eters of a chosen cluster may then be used for the subject.
This approach would require a large number of subject-
specific fits in order to discover meaningful clusters, and it
would not be known whether predicting cluster membership
effectively based on x,, would be possible, as the x,, would
be disconnected from the clustering.

[0058] Another approach would be to use principal com-
ponent analysis (PCA) or another dimensionality reduction
approach on the set of learned regression parameters wg . .
. W, as a low-dimensional characterization of the space of
valid regression parameters, and then use the calibration data
to fit coeflicients for the characterization. The characteriza-
tion would fit into the penalty term Z, as for instance with
PCA the underlying Gaussian model of the parameter space
would make for an effective prior or penalty (i.e., using
negative log likelihood of this model). With only a small
number of measurements, either only a very small number
of modes could be used, or there would need to be heavy
reliance on the penalty term to prevent overfitting. Further-
more, while in principle a second regression model could be
trained mapping X, to 0,, there is no guarantee the second
regression model would be effective, since the modes would
have been fit independently of the static measurements.
[0059] A model that simultaneously estimates the map-
ping function between x,; and 6, as well as the parameters 6,
and jointly optimizes the overall loss on all the training data
for all subjects is shown below. This model results in modes
that are predictable from x;, because the modes were trained
in this manner. Furthermore, the model has a flexible num-
ber of modes that can be tuned given the amount of data
available for training. Both of these goals can be achieved
with the following joint model, where a vector of respon-
sibilities 7 creates a convex combination of M modes (the
w¥, each of which is a full set of parameters for the inner
model) to form w;:
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The parameters m, are in turn formed from the static features
X, through a mixture parameter regression matrix P with
rows P,. The outputs are constrained to be both positive and
sum to one:

exp(P;x;s)

T Zexp(Pyxis)
4

i

[0060] Once the number of modes M has been chosen, the
mode matrix W and the P matrix have a total number of
MQ+MC global parameters with two additional scale and
shift parameters (¢, and f3,) specific to each subject. For a
particular subject, the x,, may be input into the above
equation to determine the mode weights =, and with these
compute a convex combination of w* to produce w,. The
scale and shift parameters o, and 3, can be fit with calibration
data for that subject.

[0061] A diagram of the personalized prediction model
described above is shown in FIG. 3. The personalized
prediction model 80 operates in four stages, including a
training stage, a personalization stage, a calibration stage,
and a runtime stage. In the training stage, the personalized
prediction model 80 takes as inputs the subject-specific
static data x,, and the time-dependent data and targets Xx,,, y,,
for all subjects in the training data and fits matrices W and
P (these are the global parameters of the model).

[0062] In the personalization stage, the personalized pre-
diction model 80 takes as inputs the static data x,, from one
subject and uses the subject’s static data X,, to determine
mixture parameters T, via mixture parameter regression
matrix P and the normalization described above; these m; are
then applied to mode matrix W to generate the inner model
parameters w; for that subject.

[0063] In the calibration stage, the personalized prediction
model 80 takes as inputs the calibration data x,, . and y,, .
From the calibration data, the personalized prediction model
80 generates a scale parameter o, and a shift parameter f3,.
These parameters are used to modify the mapping F(*).
[0064] In the runtime stage, the personalized prediction
model 80 uses the parameters generated in the previous three
stages, which are now fixed for the subject, to generate
personalized time-dependent predictions y,, from that sub-
ject’s time-dependent measurements X,,.

[0065] Once a blood pressure estimate 60 has been gen-
erated, the wearable sensing device 200 may modify the
schedule on which measurements of the inputs of the
machine learning model 40 are taken based on the blood
pressure estimate 60. The wearable sensing device 200 may
use physiological data, along with clinical data and patient-
reported symptom data, not only to predict outcomes, but
also to change the rate and timing at which physiological
measurements and symptom reports are taken. For example,
if the machine learning model 40 generates identifies signs
of' dangerous levels of blood pressure but has low confidence
in this prediction, the frequency of measurement of both
symptom report data and physiological data can be
increased; in contrast, if the model indicates that the patient
is emerging from a high-risk period and appears to be stable,
the frequency of data collection can be reduced to improve
compliance and reduce patient burden. As a second example,
when patients report symptoms that present only during
exercise or activity, or if the machine learning model 40
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identifies this automatically, measurement resources can be
allocated to times of higher activity.

[0066] The wearable sensing device 200 is primarily a
wrist-worn sensing device, but also offers the opportunity to
incorporate other elements of heart failure monitoring and
management via notifications and data input on the wearable
sensing device 200. For example, the device 200 can provide
medication reminders, possibly coupled specifically to the
detection of medication ingestion described below. That is,
because medication ingestion can be specifically detected,
the device 200 can provide reminders that are only surfaced
when a patient misses a dose. Similarly, because the machine
learning model 40 can present early indicators of changes in
blood pressure, the device 200 may also provide intelligent
reminders of behavioral instructions (e.g. dietary restric-
tions) when it appears that that patient is at high risk of a
spike/dip in blood pressure.

[0067] After the machine learning model 40 has deter-
mined a blood pressure estimate 60, the machine learning
model 40 may produce a variety of outputs based on the
blood pressure estimate 60. For example, the blood pressure
estimate 60 may be conveyed for display on a display device
18.

[0068] The machine learning model 40 may also convey
the blood pressure estimate 60 for display to a clinician. The
blood pressure estimate 60 may be conveyed to the clinician
as a direct presentation including the systolic and diastolic
blood pressure. It may also be conveyed to the clinician in
the form of alerts or continuously varying risk scores and
risk score predictions. For example, based on outputs con-
veyed by a plurality of wearable sensing devices 200 used by
a cohort of patients, blood pressure estimates 60 may be
conveyed to the clinician in the form of a dashboard of all
patients in the cohort, with each patient’s risk of becoming
hypertensive in the next month, year, etc. even if they are not
hypertensive at the moment.

[0069] The blood pressure estimate 60 may also be used to
track the effectiveness of medications taken by the user.
Medications typically given to blood pressure patients (e.g.
ACE inhibitors, angiotensin II receptor antagonists, aldos-
terone antagonists, diuretics) have a significant acute effect
on blood pressure that can be observed based on the blood
pressure estimate 60. As such, the machine learning model
40 can be used to monitor whether the medication was taken,
whether it is working as expected, whether the dose was too
low/high, etc. This information could be used to inform the
clinician that medications are working or not working as
well as to remind a patient to take medication.

[0070] The machine learning model 40 may also model
the effect of medications on blood pressure. Different medi-
cations have different levels of effect on different patients,
and clinicians typically rotate through the possibilities in the
hopes of finding the most effective one with minimal side
effects. Using the machine learning model 40, beyond
simply tracking the changes in medication, if the medication
types and ingestion times are available to the system, (e.g.
via patient entry on the device or online, or automated
mechanisms such as detection of RFID tags on medication
bottles), effects of various medications specific to a given
patient could be modeled, and as such guide clinicians in
predicting appropriate doses. Furthermore, a subset of
potential side effects (e.g. lethargy, cardiovascular effects
such as rapid heart rate (tachycardia), and shortness of
breath) could be tracked automatically.
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[0071] The machine learning model 40 may also be used
to track compliance with and model the effects of non-
medication-based interventions. Wearable sensors allow the
wearable sensing device 200 to track compliance with
non-medication recommendations, such as exercise, reduc-
tion of sedentary behavior, light exercise/walking after
meals, etc. Furthermore, the machine learning model 40 can
model the effectiveness of these interventions both in terms
of compliance (not all recommendations will have equal
compliance) and in terms of BP effects when executed as
recommended. The resulting models can be used by the
clinicians to adjust or reinforce their recommendations.
[0072] The blood pressure estimate 60 output by the
machine learning model 40 may be directly incorporated
into treatment decisions. The machine learning model 40
may make automatic or recommended adjustments to medi-
cation doses based on the blood pressure estimate 60. The
blood pressure estimate 60 may also be used to recommend
scheduling of inpatient or outpatient visits.

[0073] A method 100 for determining an estimate of the
blood pressure of a patient is shown in FIG. 4. The method
may be performed using the hardware and software com-
ponents described above, or other suitable hardware and
software components. At step 102, the machine learning
model 40 is trained on a cohort data set 62. The cohort data
set 62 includes subject-specific contextual data 64, time-
varying features 66, and blood pressure measurements 68
for a plurality of subjects in the cohort. The contextual data
64 for the subjects in the cohort may include medical history
data.

[0074] At step 104, the machine learning model 40
receives contextual data 44 for a specific subject. The
contextual data 44 includes medical history data of the
subject. The medical history data of the subject may be
selected from the group consisting of demographic infor-
mation, comorbidities, past and present medications, vital
signs, laboratory test results, recent weight change, echocar-
diogram results, cardiovascular disease history, smoking
history, and past and present pregnancy. Other patient medi-
cal history data may also be used. At step 106, the machine
learning model 40 is personalized to the subject using the
contextual data 44. The subject-specific contextual data 44
may be used to determine parameters of the machine learn-
ing model 40.

[0075] At step 108, the machine learning model 40 also
receives a set of time-varying features 46 and blood pressure
measurements 48 of the subject. This set of data, along with
the contextual data 44 of the subject, is used to calibrate the
machine learning model 40. The machine learning model 40
may be calibrated at least in part using a brachial cuff
measurement. The machine learning model 40 may also be
calibrated at least in part by the subject going through a
series of perturbations based on posture, exercising at vary-
ing levels of intensity, and/or taking medication which
changes the blood pressure of the subject.

[0076] The time-varying features 46 for the subject may
be detected by a wearable sensing device 200. The wearable
sensing device 200 may detect a pulse pressure wave signal
52 using a pulse pressure sensor 50 and may detect a pulse
electrical signal 56 using an electrocardiograph (EKG) 54.
The pulse pressure sensor 50 may be configured to detect the
pressure wave morphology of the pulse pressure signal,
including pressure wave morphology metrics selected from
a group consisting of augmentation index, maximum sys-
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tolic slope, systolic rise time, ejection time, dicrotic notch
height, dicrotic notch time, pulse pressure, reflected wave
arrival time, and heart rate. The set of time-varying features
46 for the subject may include a pulse arrival time 58. The
pulse arrival time 58 may be determined using the pulse
pressure wave signal 52 and the pulse electrical signal 56.
The pulse pressure sensor 50 may also detect other pressure
wave morphology metrics.

[0077] At step 110, the machine learning model 40 and the
time-varying features 46 for the subject are used to generate
a blood pressure estimate 60. Machine learning techniques
used by the machine learning model 40 to generate the blood
pressure estimate 60 may include regression models, hidden
Markov models, or conditional random field models, as well
as other models. At step 112, the blood pressure estimate 60
generated by the machine learning model 40 is conveyed for
display on a display device 18.

[0078] FIG. 5 schematically shows a non-limiting embodi-
ment of a computing system 500 that can enact one or more
of the methods and processes described above. Computing
system 500 is shown in simplified form. Computing device
10 shown in FIG. 1A and FIG. 1B may take the form of
computing system 500.

[0079] Computing system 500 includes a logic processor
504, volatile memory 508, and a non-volatile storage device
512. Computing system 500 may optionally include a dis-
play subsystem 516, input subsystem 520, communication
subsystem 524, and/or other components not shown in FIG.
5

[0080] Logic processor 504 includes one or more physical
devices configured to execute instructions. For example, the
logic processor may be configured to execute instructions
that are part of one or more applications, programs, routines,
libraries, objects, components, data structures, or other logi-
cal constructs. Such instructions may be implemented to
perform a task, implement a data type, transform the state of
one or more components, achieve a technical effect, or
otherwise arrive at a desired result.

[0081] The logic processor 504 may include one or more
physical processors (hardware) configured to execute soft-
ware instructions. Additionally or alternatively, the logic
processor may include one or more hardware logic circuits
or firmware devices configured to execute hardware-imple-
mented logic or firmware instructions. Processors of the
logic processor 504 may be single-core or multi-core, and
the instructions executed thereon may be configured for
sequential, parallel, and/or distributed processing. Indi-
vidual components of the logic processor optionally may be
distributed among two or more separate devices, which may
be remotely located and/or configured for coordinated pro-
cessing. Aspects of the logic processor 504 may be virtual-
ized and executed by remotely accessible, networked com-
puting devices configured in a cloud-computing
configuration. In such a case, these virtualized aspects may
be run on different physical logic processors of various
different machines.

[0082] Volatile memory 508 may include physical devices
that include random access memory. Volatile memory 508 is
typically utilized by logic processor 504 to temporarily store
information during processing of software instructions. It
will be appreciated that volatile memory 508 typically does
not continue to store instructions when power is cut to the
volatile memory.
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[0083] Non-volatile storage device 512 includes one or
more physical devices configured to hold instructions
executable by the logic processors to implement the methods
and processes described herein. When such methods and
processes are implemented, the state of non-volatile storage
device 512 may be transformed—e.g., to hold different data.
[0084] Non-volatile storage device 512 may include
physical devices that are removable and/or built-in. Non-
volatile storage device 512 may include optical memory
(CD, DVD, HD-DVD, Blu-Ray Disc, etc.), semiconductor
memory (ROM, EPROM, EEPROM, FLASH memory,
etc.), and/or magnetic memory (hard-disk drive, floppy-disk
drive, tape drive, MRAM, etc.), or other mass storage device
technology. Non-volatile storage device 512 may include
nonvolatile, dynamic, static, read/write, read-only, sequen-
tial-access, location-addressable, file-addressable, and/or
content-addressable devices. It will be appreciated that non-
volatile storage device 512 is configured to hold instructions
even when power is cut to the non-volatile storage device.
[0085] Aspects of logic processor 504, volatile memory
508, and non-volatile storage device 512 may be integrated
together into one or more hardware-logic components. Such
hardware-logic components may include field-program-
mable gate arrays (FPGAs), program- and application-spe-
cific integrated circuits (PASIC/ASICs), program- and appli-
cation-specific standard products (PSSP/ASSPs), system-
on-a-chip (SOC), and complex programmable logic devices
(CPLDs), for example.

[0086] The term “program” may be used to describe an
aspect of computing system 500 implemented to perform a
particular function. In some cases, a program may be
instantiated via logic processor 504 executing instructions
held by non-volatile storage device 512, using portions of
volatile memory 508. It will be understood that different
programs may be instantiated from the same application,
service, code block, object, library, routine, API, function,
etc. Likewise, the same program may be instantiated by
different applications, services, code blocks, objects, rou-
tines, APIs, functions, etc. The term “program” encompasses
individual or groups of executable files, data files, libraries,
drivers, scripts, database records, etc.

[0087] When included, display subsystem 516 may be
used to present a visual representation of data held by
non-volatile storage device 512. As the herein described
methods and processes change the data held by the non-
volatile storage device, and thus transform the state of the
non-volatile storage device, the state of display subsystem
516 may likewise be transformed to visually represent
changes in the underlying data. Display subsystem 516 may
include one or more display devices 18 utilizing virtually
any type of technology. Such display devices 18 may be
combined with logic processor 504, volatile memory 508,
and/or non-volatile storage device 512 in a shared enclosure,
or such display devices 18 may be peripheral display
devices.

[0088] When included, input subsystem 520 may com-
prise or interface with one or more user-input devices. In
some embodiments, the input subsystem may comprise or
interface with selected natural user input (NUI) componen-
try. Such componentry may be integrated or peripheral, and
the transduction and/or processing of input actions may be
handled on- or off-board. Example NUI componentry may
include a microphone 260 for speech and/or voice recogni-
tion; an infrared, color, stereoscopic, and/or depth camera
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for machine vision and/or gesture recognition; a head
tracker, eye tracker, accelerometer 232, and/or gyroscope
236 for motion detection, gaze detection, and/or intent
recognition; electric-field sensing componentry for assess-
ing brain activity; any of the sensors described above with
respect to wearable mobile computing device 200; and/or
any other suitable sensor.

[0089] When included, communication subsystem 524
may be configured to communicatively couple computing
system 500 with one or more other computing devices.
Communication subsystem 524 may include wired and/or
wireless communication devices compatible with one or
more different communication protocols. As non-limiting
examples, the communication subsystem may be configured
for communication via a wireless telephone network, or a
wired or wireless local- or wide-area network. In some
embodiments, the communication subsystem may allow
computing system 500 to send and/or receive messages to
and/or from other devices via a network such as the Internet.
[0090] According to one aspect of the present disclosure,
a method for estimating blood pressure is provided, com-
prising training a machine learning model on a cohort data
set. The cohort data set may include subject-specific con-
textual data, time-varying features, and blood pressure mea-
surements for a plurality of subjects. The method may
further include receiving contextual data for a specific
subject, wherein the contextual data includes medical his-
tory data of the subject. The method may include personal-
izing the machine learning model to the subject based on the
contextual data. In addition, the method may further include
calibrating the machine learning model to the subject based
on a set of time-varying features and blood pressure mea-
surements of the subject. The method may further include
using the machine learning model and the time-varying
features for the subject to generate a blood pressure estimate.
[0091] In this aspect, the contextual data of the subject
may include information from the subject’s medical history
data selected from the set consisting of demographic infor-
mation, comorbidities, past and present medications, vital
signs, laboratory test results, recent weight change, echocar-
diogram results, cardiovascular disease history, smoking
history, and past and present pregnancy.

[0092] In this aspect, the subject-specific contextual data
may be used to determine parameters of the machine learn-
ing model.

[0093] In this aspect, the machine learning model may be
calibrated at least in part using a brachial cuff measurement.
[0094] In this aspect, the machine learning model may be
calibrated at least in part by the subject going through a
series of perturbations based on posture.

[0095] In this aspect, the machine learning model may be
calibrated at least in part by the subject exercising at varying
levels of intensity.

[0096] In this aspect, the machine learning model may be
calibrated at least in part by the subject taking medication
which changes the blood pressure of the subject.

[0097] In this aspect, the blood pressure estimate may be
conveyed for display on a display device.

[0098] In this aspect, the time-varying features for the
subject may be detected by a wearable sensing device.
[0099] In this aspect, the wearable sensing device may
include an electrocardiograph (EKG).

[0100] In this aspect, the wearable sensing device may
include a pulse pressure sensor.
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[0101] In this aspect, the pulse pressure sensor may be
configured to detect the pressure wave morphology of the
pulse pressure wave signal, including pressure wave mor-
phology metrics selected from a group consisting of aug-
mentation index, maximum systolic slope, systolic rise time,
ejection time, dicrotic notch height, dicrotic notch time,
pulse pressure, reflected wave arrival time, and heart rate.
[0102] In this aspect, the wearable sensing device may
include both a pulse pressure sensor and an EKG, wherein
the wearable sensing device is configured to determine a
pulse arrival time using the pulse pressure sensor and EKG,
and the time-varying information includes the pulse arrival
time.

[0103] According to another aspect of the present disclo-
sure, a wearable sensing device is provided, comprising a
processor configured to receive contextual data for a specific
subject. The contextual data may include medical history
data of the subject. The processor may be further configured
to receive a cohort data set. The cohort data set may include
subject-specific contextual data, time-varying features, and
blood pressure measurements for a plurality of subjects. The
processor may be configured to detect a pulse pressure wave
signal using a pulse pressure sensor. The processor may be
further configured to determine a blood pressure estimate
using a machine learning model that takes as inputs at least
the contextual data of the subject, the cohort data set, and a
set of time-varying features for the subject including the
pulse pressure wave signal.

[0104] In this aspect, the processor may be configured to
detect a pulse electrical signal using an electrocardiograph
(EKG®).

[0105] In this aspect, the set of time-varying features for
the subject may include a pulse arrival time. The pulse
arrival time may be determined using the pulse pressure
wave signal and the pulse electrical signal.

[0106] In this aspect, the contextual data for the subject
may include medical history data of the subject selected
from the group consisting of demographic information,
comorbidities, past and present medications, vital signs,
laboratory test results, recent weight change, echocardio-
gram results, cardiovascular disease history, smoking his-
tory, and past and present pregnancy.

[0107] In this aspect, the pulse pressure sensor may be
configured to detect the pressure wave morphology of the
pulse pressure wave signal, including pressure wave mor-
phology metrics selected from a group consisting of aug-
mentation index, maximum systolic slope, systolic rise time,
ejection time, dicrotic notch height, dicrotic notch time,
pulse pressure, reflected wave arrival time, and heart rate.
[0108] In this aspect, the blood pressure estimate is con-
veyed for display on a display device.

[0109] According to another aspect of the present disclo-
sure, a wearable sensing device is provided, comprising a
processor configured to receive contextual data for a specific
subject. The contextual data may include medical history
data of the subject. The processor may be configured to
receive a set of blood pressure measurements of the subject.
The processor may be further configured to receive a cohort
data set. The cohort data set may include subject-specific
contextual data, time-varying features, and blood pressure
measurements for a plurality of subjects. The processor may
be configured to detect a set of time-varying features for the
subject including a pulse pressure wave signal. The proces-
sor may be further configured to determine a blood pressure
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estimate at least in part by inputting at least the contextual
data of the subject, the cohort data set, the set of blood
pressure measurements of the subject, and the set of time-
varying features for the subject into a machine learning
model. Determining the blood pressure estimate may further
include personalizing the machine learning model to the
subject based on the contextual data. In addition, determin-
ing the blood pressure estimate may include calibrating the
machine learning model to the subject based on a set of
time-varying features and the blood pressure measurements
of the subject. Determining the blood pressure estimate may
further include using the machine learning model and the
time-varying features for the subject to generate a blood
pressure estimate.

[0110] It will be understood that the configurations and/or
approaches described herein are exemplary in nature, and
that these specific embodiments or examples are not to be
considered in a limiting sense, because numerous variations
are possible. The specific routines or methods described
herein may represent one or more of any number of pro-
cessing strategies. As such, various acts illustrated and/or
described may be performed in the sequence illustrated
and/or described, in other sequences, in parallel, or omitted.
Likewise, the order of the above-described processes may be
changed.
[0111] The subject matter of the present disclosure
includes all novel and non-obvious combinations and sub-
combinations of the various processes, systems and configu-
rations, and other features, functions, acts, and/or properties
disclosed herein, as well as any and all equivalents thereof.
1. A method for estimating blood pressure, comprising:
training a machine learning model on a cohort data set,
wherein the cohort data set includes subject-specific
contextual data, time-varying features, and blood pres-
sure measurements for a plurality of subjects;
receiving contextual data for a specific subject, wherein
the contextual data includes medical history data of the
subject;
personalizing the machine learning model to the subject
based on the contextual data;
calibrating the machine learning model to the subject
based on a set of time-varying features and blood
pressure measurements of the subject; and
using the machine learning model and the time-varying
features for the subject to generate a blood pressure
estimate.

2. The method of claim 1, wherein the contextual data of
the subject includes information from the subject’s medical
history data selected from the set consisting of demographic
information, comorbidities, past and present medications,
vital signs, laboratory test results, recent weight change,
echocardiogram results, cardiovascular disease history,
smoking history, and past and present pregnancy.

3. The method of claim 1, wherein the subject-specific
contextual data is used to determine parameters of the
machine learning model.

4. The method of claim 1, wherein the machine learning
model is calibrated at least in part using a brachial cuff
measurement.

5. The method of claim 1, wherein the machine learning
model is calibrated at least in part by the subject going
through a series of perturbations based on posture.
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6. The method of claim 1, wherein the machine learning
model is calibrated at least in part by the subject exercising
at varying levels of intensity.

7. The method of claim 1, wherein the machine learning
model is calibrated at least in part by the subject taking
medication which changes the blood pressure of the subject.

8. The method of claim 1, wherein the blood pressure
estimate is conveyed for display on a display device.

9. The method of claim 1, wherein the time-varying
features for the subject are detected by a wearable sensing
device.

10. The method of claim 9, wherein the wearable sensing
device includes an electrocardiograph (EKG).

11. The method of claim 9, wherein the wearable sensing
device includes a pulse pressure sensor.

12. The method of claim 11, wherein the pulse pressure
sensor is configured to detect the pressure wave morphology
of the pulse pressure wave signal, including pressure wave
morphology metrics selected from a group consisting of
augmentation index, maximum systolic slope, systolic rise
time, ejection time, dicrotic notch height, dicrotic notch
time, pulse pressure, reflected wave arrival time, and heart
rate.

13. The method of claim 9, wherein the wearable sensing
device includes both a pulse pressure sensor and an EKG,
wherein:

the wearable sensing device is configured to determine a

pulse arrival time using the pulse pressure sensor and
EKG; and

the time-varying information includes the pulse arrival

time.

14. A wearable sensing device, comprising:

a processor configured to:

receive contextual data for a specific subject, wherein
the contextual data includes medical history data of
the subject;

receive a cohort data set, wherein the cohort data set
includes subject-specific contextual data, time-vary-
ing features, and blood pressure measurements for a
plurality of subjects;

detect a pulse pressure wave signal using a pulse
pressure sensor; and

determine a blood pressure estimate using a machine
learning model that takes as inputs at least the
contextual data of the subject, the cohort data set,
and a set of time-varying features for the subject
including the pulse pressure wave signal.

15. The wearable sensing device of claim 14, wherein the
processor is configured to detect a pulse electrical signal
using an electrocardiograph (EKG).

16. The wearable sensing device of claim 15, wherein the
set of time-varying features for the subject includes a pulse
arrival time, wherein the pulse arrival time is determined
using the pulse pressure wave signal and the pulse electrical
signal.

17. The wearable sensing device of claim 14, wherein the
contextual data for the subject includes medical history data
of the subject selected from the group consisting of demo-
graphic information, comorbidities, past and present medi-
cations, vital signs, laboratory test results, recent weight
change, echocardiogram results, cardiovascular disease his-
tory, smoking history, and past and present pregnancy.

18. The wearable sensing device of claim 14, wherein the
pulse pressure sensor is configured to detect the pressure
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wave morphology of the pulse pressure wave signal, includ-
ing pressure wave morphology metrics selected from a
group consisting of augmentation index, maximum systolic
slope, systolic rise time, ejection time, dicrotic notch height,
dicrotic notch time, pulse pressure, reflected wave arrival
time, and heart rate.

19. The wearable sensing device of claim 14, wherein the
blood pressure estimate is conveyed for display on a display
device.

20. A wearable sensing device, comprising:

a processor configured to:

receive contextual data for a specific subject, wherein
the contextual data includes medical history data of
the subject;

receive a set of blood pressure measurements of the
subject;

receive a cohort data set, wherein the cohort data set
includes subject-specific contextual data, time-vary-
ing features, and blood pressure measurements for a
plurality of subjects;
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detect a set of time-varying features for the subject
including a pulse pressure wave signal; and

determine a blood pressure estimate at least in part by:

inputting at least the contextual data of the subject,
the cohort data set, the set of blood pressure
measurements of the subject, and the set of time-
varying features for the subject into a machine
learning model;

personalizing the machine learning model to the
subject based on the contextual data;

calibrating the machine learning model to the subject
based on a set of time-varying features and the
blood pressure measurements of the subject; and

using the machine learning model and the time-
varying features for the subject to generate a blood
pressure estimate.
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